Statistical Script Learning with Multi-Argument Events

نویسندگان

  • Karl Pichotta
  • Raymond J. Mooney
چکیده

Scripts represent knowledge of stereotypical event sequences that can aid text understanding. Initial statistical methods have been developed to learn probabilistic scripts from raw text corpora; however, they utilize a very impoverished representation of events, consisting of a verb and one dependent argument. We present a script learning approach that employs events with multiple arguments. Unlike previous work, we model the interactions between multiple entities in a script. Experiments on a large corpus using the task of inferring held-out events (the “narrative cloze evaluation”) demonstrate that modeling multi-argument events improves predictive accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Script Learning with Recurrent Neural Nets

Statistical Scripts are probabilistic models of sequences of events. For example, a script model might encode the information that the event “Smith met with the President” should strongly predict the event “Smith spoke to the President.” We present a number of results improving the state of the art of learning statistical scripts for inferring implicit events. First, we demonstrate that incorpo...

متن کامل

FEEL: Featured Event Embedding Learning

Statistical script learning is an effective way to acquire world knowledge which can be used for commonsense reasoning. Statistical script learning induces this knowledge by observing event sequences generated from texts. The learned model thus can predict subsequence events, given earlier events. Recent approaches rely on learning event embeddings which capture script knowledge. In this work, ...

متن کامل

Using Sentence-Level LSTM Language Models for Script Inference

There is a small but growing body of research on statistical scripts, models of event sequences that allow probabilistic inference of implicit events from documents. These systems operate on structured verb-argument events produced by an NLP pipeline. We compare these systems with recent Recurrent Neural Net models that directly operate on raw tokens to predict sentences, finding the latter to ...

متن کامل

Promoting Critical, Elaborative Discussions through a Collaboration Script and Argument Diagrams

During the past two decades a variety of approaches to support argumentation learning in computer-based learning environments have been investigated. We present an approach that combines argumentation diagramming and collaboration scripts, two methods successfully used in the past individually. The rationale for combining the methods is to capitalize on their complementary strengths: Argument d...

متن کامل

A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge

Scripts representing common sense knowledge about stereotyped sequences of events have been shown to be a valuable resource for NLP applications. We present a hierarchical Bayesian model for unsupervised learning of script knowledge from crowdsourced descriptions of human activities. Events and constraints on event ordering are induced jointly in one unified framework. We use a statistical mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014